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Abstract 

Background:  Gastroinestinal nematodes (GIN) are one of the major health problem in grazing sheep. Although 
genetic variability of the resistance to GIN has been documented, traditional selection is hampered by the difficulty 
of recording phenotypes, usually fecal egg count (FEC). To identify causative mutations or markers in linkage disequi-
librium (LD) to be used for selection, the detection of quantitative trait loci (QTL) for FEC based on linkage disequi-
librium-linkage analysis (LDLA) was performed on 4097 ewes (from 181 sires) all genotyped with the OvineSNP50 
Beadchip. Identified QTL regions (QTLR) were imputed from whole-genome sequences of 56 target animals of the 
population. An association analysis and a functional annotation of imputed polymorphisms in the identified QTLR 
were performed to pinpoint functional variants with potential impact on candidate genes identified from ontological 
classification or differentially expressed in previous studies.

Results:  After clustering close significant locations, ten QTLR were defined on nine Ovis aries chromosomes (OAR) by 
LDLA. The ratio between the ANOVA estimators of the QTL variance and the total phenotypic variance ranged from 
0.0087 to 0.0176. QTL on OAR4, 12, 19, and 20 were the most significant. The combination of association analysis and 
functional annotation of sequence data did not highlight any putative causative mutations. None of the most signifi-
cant SNPs showed a functional effect on genes’ transcript. However, in the most significant QTLR, we identified genes 
that contained polymorphisms with a high or moderate impact, were differentially expressed in previous studies, 
contributed to enrich the most represented GO process (regulation of immune system process, defense response). 
Among these, the most likely candidate genes were: TNFRSF1B and SELE on OAR12, IL5RA on OAR19, IL17A, IL17F, 
TRIM26, TRIM38, TNFRSF21, LOC101118999, VEGFA, and TNF on OAR20.

Conclusions:  This study performed on a large experimental population provides a list of candidate genes and 
polymorphisms which could be used in further validation studies. The expected advancements in the quality of the 
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Background
Gastrointestinal nematodes (GIN) are one of the major 
health problems in grazing animals [1]. GIN infections 
result in important yield reductions and higher produc-
tion costs due to veterinary treatments and higher cull-
ing rates [2]. Moreover, chemical treatments involve the 
risk of drug residues in the food and environment and 
the appearance of anthelmintic resistance, that has been 
reported in several countries [3–6]. In sheep, GIN con-
trol strategies may also include management practices 
such as soil tillage or rotational grazing that aim at reduc-
ing pasture contamination [7, 8]. Alternative approaches 
to limit GIN infection rely on nutritional schemes based 
on either grazing crops with anthelmintic proprieties, 
such as chicory (Cichorium intybus), sulla (Hedysarum 
coronarium), sainfoin (Onobrychus viciifolia) and sericea 
lespedeza (Lespedeza cuneata) [9], or supplementation 
with tannins and/or proteins; but even these approaches 
are difficult to apply, especially in extensive or semi-
extensive systems.

Fecal egg count (FEC), i.e. the number of parasite eggs 
per g of faeces, has been largely used as a proxy trait to 
measure individual resistance to GIN. Selective breed-
ing of animals with enhanced resistance to GIN has been 
suggested for the sustainable control of parasite infec-
tions in sheep since genetic variation between individuals 
and breeds has been documented. Indeed, estimates of 
the heritability of proxy traits for GIN resistance in sheep 
ranges from 0.01 to 0.65 [10], but it is generally moder-
ate for FEC (0.25–0.33 [11]; 0.16 [12]; 0.21–0.55 [13]; and 
0.18–0.35 [14]). Thus, breeding for resistance to GIN can 
be considered in sheep but implies structured selection 
schemes and accurate recording of both performances 
and pedigree information, which are essential for genetic 
evaluation. However, the inclusion of GIN resistance in 
current breeding schemes is hampered by the difficulty to 
record FEC on a large scale since its measure is too labo-
rious and costly in field conditions. For this reason, sev-
eral studies have been carried out to dissect the genetic 
determinism of GIN resistance with the final aim of set-
ting up breeding schemes that are based on molecular 
information rather than large-scale recording for progeny 
testing. Such studies have followed the development of 
the molecular biology and omic sciences and the con-
comitant advancement of the statistical methodologies. 
The first studies were based on sparse maps of molecular 
markers, such as microsatellites, and used linkage analy-
sis on family-structured populations [15]. In spite of the 

large number of genomic regions detected in sheep [16–
18], low significance levels and the low accuracy of locali-
sations made marker-assisted selection unfeasible. Later 
on, the development of single nucleotide polymorphism 
(SNP) arrays with medium and high densities and the 
application of enhanced statistical methods allowed to 
extend the analysis at the population level and to increase 
the power of detection and the accuracy of localisations 
[19–23]. More recently, the availability of high-through-
put sequencing technologies and increasingly accurate 
genome annotations may allow the discovery of new 
polymorphisms in DNA or RNA sequences and the clas-
sification of their effects on genes that are more and more 
well-known in terms of functions.

The Sarda breed is the most important Italian dairy 
sheep breed with around three million heads in approxi-
mately 10,000 flocks (Regional Department for Agricul-
ture, unpublished observations). Sheep breeding has 
traditionally been the most important livestock pro-
duction in Sardinia. Farming systems vary from semi-
extensive to semi-intensive with a wide-spread use of 
grazing on natural pastures and forage crops where 
infection from GIN is unavoidable. The most repre-
sented nematodes species are Teladorsagia circuncincta, 
Trichostrongylus spp., Haemonchus contortus, Tela-
dorsagia trifurcata, Cooperia spp., while Oesophagos-
tomum venulosum and Nematodirus spp. are found in 
negligible quantities [24]. The prevalence rate in terms 
of worm egg count generally increases in the summer-
autumn period. In these conditions, most farmers have 
to administer anthelmintics, often without well planned 
protocols in terms of individual diagnosis, doses and fre-
quency of treatments. Anthelmintic treatments concern 
99.4% of the sheep farms on the island, with on average 
1.54 treatments per year that are mainly carried out with 
benzimidazoles (47.8%), levamisole 21.1%, avermectin 
(12.7%) and probenzimidazoles (11.5%) [25]. Thus, the 
control of GIN implies high costs, organizational efforts 
and further economic losses related to the rules that limit 
drug residues in milk. In this situation, selective breed-
ing is an attractive option also for Sarda sheep. The cur-
rent breeding scheme is implemented on about 8% of the 
purebred population for which yield traits and pedigree 
data are recorded (Herd Book). The main selection objec-
tives are milk yield per lactation, scrapie resistance, and 
udder morphology [26]. With the aim of assessing the 
feasibility of a marker-assisted selection (MAS) scheme 
for resistance to GIN based on causative mutations or 

annotation of the ovine genome and the use of experimental designs based on sequence data and phenotypes from 
multiple breeds that show different LD extents and gametic phases may help to identify causative mutations.
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markers in linkage disequilibrium (LD), which does not 
need large-scale FEC recording, the Regional Agency 
for Agricultural Research (AGRIS) has established since 
the late 1990s an experimental population for which 
the individuals are genotyped with SNP arrays and rou-
tinely measured for FEC, as well as other production and 
functional traits. More recently, a target sample of influ-
ential animals from this population was whole-genome 
re-sequenced and SNP genotypes were imputed to the 
whole population.

The aim of this study was to identity QTL segregating 
in the Sarda breed and to search for candidate genes and 
causative mutations by the functional annotation and 
association analysis of imputed Sarda sequence data in 
these target regions.

Methods
Experimental population
The nucleus flock of the Sarda breed, that is described in 
more detail in [26, 27], derives from a backcross popu-
lation of Sarda × Lacaune ewes created in 1999 by mat-
ing 10 F1 Sarda × Lacaune rams with purebred Sarda 
ewes. Thereafter, the generations of ewes that were pro-
duced until now, were obtained by mating adult ewes of 
the nucleus flock exclusively with rams coming from the 
Sarda Herd Book. This has led to a progressive reduction 
of the proportion of Lacaune blood in the experimental 
population, which is negligible in the latest generations 
(around 0.4%). The average size of the flock is about 900 
milked ewes per year with a replacement rate of 25 to 
30%. The flock is raised on an experimental farm located 
in the south of Sardinia that generally shows a semi-arid 
Mediterranean climate with important variations in 
rainfall and temperatures across seasons and years. The 
flock is managed following the traditional farming system 
adopted on the island, which is based on grazing natu-
ral or cultivated swards (mainly ryegrass and berseem 
clover) and supplements of hay, silage and concentrate. 
Lambings of most of adult ewes occur in the autumn, and 
those of the remaining ewes and of the primiparous ewes 
occur in late winter or early spring. Ewes are usually bred 
in management groups depending on the lambing period. 
They are milked twice a day by machine from after lamb 
separation (one month after lambing) until the early 
summer period when they are progressively and almost 
simultaneously dried off.

Molecular data
All the ewes of the experimental population born from 
1999 to 2017 (n = 4355) and their sires (n = 181, includ-
ing the 10 F1) and 11 Sarda grandsires were genotyped 
with the OvineSNP50 Beadchip (50  k hereafter). SNP 
editing was performed using the call rate and minor allele 

frequency (MAF) thresholds of 95% and 1%, respectively. 
The ovine genome assembly v4.0 and the SNPchimMpv.3 
software [28] were used to construct the genetic map by 
assuming 1  Mb = 1  cM. Unmapped SNPs and SNPs on 
sex chromosomes were not included in the study. Finally, 
43,390 SNPs were retained for further analyses.

Among the 4547 genotyped animals, 56 had also been 
fully re-sequenced within the framework of previous pro-
jects. The choice of these 56 animals was based on the 
assumption that they carried opposite alleles for specific 
QTL segregating in the Sarda breed and identified in our 
previous investigations [29] or because they had many 
progeny in the experimental population. The first group 
(24 animals, including two Sarda rams and 22 daughters 
of Sarda rams) had been whole-genome re-sequenced 
with a target coverage of 12X. The other 32 animals were 
Sarda sires chosen among those with a higher impact on 
the population, more recently re-sequenced on an Illu-
mina HiSeq 3000 sequencer and a 30X target coverage. 
Whole-genome sequence (WGS) data was processed 
with a pipeline implemented with Snakemake [30], 
and developed at CRS4 (Center For Advanced Studies, 
Research and Development in Sardinia https://​www.​crs4.​
it/)) available at https://​github.​com/​solida-​core. Briefly, 
adapter sequences were removed from the short reads, 
then low-quality ends were trimmed, and sequences 
shorter than 25  bp after trimming were removed with 
the TrimGalore (v0.4.5) software [31]. The quality of the 
reads, before and after trimming, was evaluated with the 
Fastqc (v0.11.5) tool [32]. Trimmed reads were aligned 
to the Ovis aries reference genome v4.0 (https://​www.​
ncbi.​nlm.​nih.​gov/​assem​bly/​GCF_​00029​8735.2) using the 
Burrow-Wheeler Aligner (BWA v0.7.15) program [33]. 
Alignments were further sorted, converted to a CRAM 
file and indexed with Samtools (v1.6) [34]. PCR dupli-
cates were detected with the Picard (v2.18.9) tool [35]. 
After alignment, joint single nucleotide variants (SNV) 
(SNPs and insertion-deletions (INDELs)) calling was per-
formed using the GATK (v4.0.11.0) software [36], accord-
ing to the GATK Best practices workflow [37]. In order to 
apply the GATK Variant Quality Score Recalibration, first 
we ran an initial round of SNP calling and only used the 
top 5% SNPs with the highest quality scores.

Phenotypes
FEC was the proxy trait used to assess GIN resistance 
under natural conditions of infection in the experi-
mental flock. Periodically, a sample of ~ 50 ewes that 
represented the different management groups, was 
monitored to evaluate the percentage of infected ani-
mals and decide whether to sample the whole flock and 
possibly administrate anthelmintic treatment. The num-
ber of eggs of strongyles per g was determined using a 

https://www.crs4.it/
https://www.crs4.it/
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copromicroscopic test according to the McMaster tech-
nique [38] on individual samples. When the number of 
infected animals and the level of infestation were con-
sidered sufficient to appreciate individual variability, 
individual FEC were measured on the whole flock. Dur-
ing the first three years of measurement, coprocultures 
of pooled samples were also performed at each round of 
scoring in order to identify GIN genera using the tech-
nique and the identification keys of [39, 40]. The results 
of pooled faecal cultures (mean of 4 cultures and 200 to 
400 larval identifications) indicated that H. contortus, 
T. circumcincta and T. colubriformis were the dominant 
worm species.

From 2000 to 2012, individual FEC were recorded 
between one to three times per production year (consid-
ered from September to August), according to the level 
of infestation found in the periodic monitoring samplings 
that depended on annual variations in rainfall and tem-
perature. Thus, since the level of infestation was low, 
no individual measures were carried out between July 
2003 and September 2004 and between June 2006 and 
November 2007. The recording of FEC for the detection 

of QTL was closed in 2012. In 2015, FEC recording of the 
new generations of ewes born in the nucleus flock was 
started again in view of implementing marker-assisted 
or genomic selection in the Sarda breed. These data were 
added to the previous set to enhance the power of QTL 
detection of the analysis presented here.

Finally, 17,594 FEC measurements were recorded on 25 
separate dates and on 4477 animals (Table 1). The average 
number of records per ewe was 3.93 ± 2.2, ranging from 1 
(13.4% of animals) to 8 (14.13% of animals); almost half of 
the ewes (46.7%) had from 3 to 5 records.

FEC measurements, that presented a skewed distribu-
tion, were log-transformed prior to further analysis using 
lnFec = ln(FEC + 14).

Variance components and pseudo‑phenotypes for QTL 
detection
In order to calculate the pseudo-phenotypes for the 
detection of QTL and to estimate variance components, 
raw data were analysed by a repeatability model including 
the permanent environment and additive genetic random 
effects of individual animals and using the ASReml-R 4.1 

Table 1  Dates of sampling, number of animals sampled, mean and standard deviation of Fec and LnFec [ln(Fec + 14)]

EPG = eggs per g; lnFec = [ln(Fec + 14)]

Date of sampling Number of animals Mean Fec EPG SD (Fec) Mean lnFec SD (lnFec)

2000-01-21 939 349.25 563.20 5.11 1.33

2000-06-02 916 110.60 180.43 4.25 1.05

2000-10-02 918 387.23 545.3 5.45 1.09

2001-03-30 890 177.42 199.09 4.77 1.06

2001-09-07 866 301.33 528.23 4.98 1.24

2002-02-02 866 142.41 284.31 4.26 1.21

2003-03-06 699 48.90 118.08 3.54 0.96

2003-07-01 1207 127.93 220.00 4.13 1.28

2004-09-20 748 271.22 308.72 5.15 1.09

2005-07-07 226 177.28 138.97 4.97 0.81

2005-09-05 468 359.55 627.65 4.96 1.42

2006-01-23 857 218.37 355.68 4.68 1.29

2006-07-17 521 356.00 531.96 5.14 1.34

2007-11-13 655 267.16 578.94 4.46 1.51

2008-07-22 645 402.67 797.06 4.95 1.53

2009-06-24 763 848.77 1300.64 5.77 1.57

2010-02-08 554 265.98 446.89 4.83 1.31

2010-05-18 672 161.61 275.56 4.35 1.26

2011-04-06 653 346.36 477.36 5.16 1.29

2012-06-16 609 1590.02 2019.34 6.54 1.56

2015-09-03 528 162.57 246.80 4.45 1.24

2016-07-20 473 506.18 773.90 5.21 1.58

2017-05-20 554 204.57 302.27 4.72 1.18

2018-05-08 674 247.60 465.71 4.29 1.60

2019-02-12 693 389.99 961.97 5.26 1.25
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software [41]. Environmental fixed effects were the date 
of sampling, the age of the animal (from 1 to 4 years) and 
its physiological status at the date of sampling. The lev-
els of the physiological status were built considering the 
days from parturition and the number of lambs carried 
or born by the measured ewe in the considered produc-
tion year. Five classes were considered: ewes without 
pregnancy and lactation, and thus with no lambs, in the 
considered production year; ewes sampled within 30 days 
before or after lambing with one lamb; ewes sampled 
within 30 days before or after lambing with two or more 
lambs; lactating ewes with one lamb; and lactating ewes 
with two or more lambs.

Individual FEC recorded from September to the fol-
lowing dry-off (July) were assigned to the same year of 
age. Data from animals younger than ten months (570 
records), which can be considered without acquired 
immunisation, were not included so that a measure of the 
parasite resistance expressed by immunized animals was 
used. However, 90% of those animals had measurements 
at older ages which were included in the analysis. Only 
records from genotyped animals, i.e. born before 2017, 
were included in the analysis. The final dataset included 
16,530 records from 4097 animals recorded on 24 sepa-
rate dates. Genetic relationships between 4547 animals, 
including the recorded ewes and their sires and geno-
typed ancestors, were taken into account by calculating 
the genomic relationship matrix (GRM) based on 50  k 
genotypes, following [42] and using the GCTA software 
[43]. The GRM was then inverted using the Ginv function 
provided by the Mass R package (version 7.3–51.6), [44] 
which provides a generalized inverse matrix. Pseudo-
phenotypes for QTL detection were then calculated as 
the average performance deviation (APD) of each ewe as 
proposed by Usai et al. [27]: i.e. by averaging single ani-
mal residuals and summing-up the genetic and perma-
nent environment random predictions.

QTL detection analysis
The model used for the QTL detection based on 50k SNP 
data was the same that was applied to the experimental 
population for milk traits by Usai et al. [27]. It is based on 
the combined use of LD and linkage analysis (LA) infor-
mation (LDLA) to estimate the probability of identity-by-
descent (IBD) between pairs of gametes of the genotyped 
individuals at the investigated position. First, the paternal 
and maternal inherited gametes of the genotyped individu-
als were reconstructed by the LD multilocus iterative peel-
ing method [27, 45] by exploiting the genotypes and the 
familial structure of the population. Then, the base gametes 
of the population were identified as the gametes inher-
ited from an ungenotyped parent and corresponded to: 
the gametes of the 10 F1 rams and of the 74 Sarda (grand) 

sires, the maternal or paternal gametes of the 43 ewes with 
an unknown sire or dam, respectively, and the maternal 
gametes of the 928 back-cross ewes and of the 108 Sarda 
(grand) sires for which only the sire was genotyped. The 
1247 base haplotypes (BH) were further divided accord-
ing to their breed of origin in BHL (the 10 Lacaune paternal 
gametes carried by the F1 rams) and BHS (the remaining 
1237 Sarda gametes). Finally, the remaining parental gam-
etes of the genotyped animals which carried, at each posi-
tion, an allele inherited from one out of the 1247 original 
BH were considered as replicates of BH (RH).

The IBD between pairs of BH were estimated by LD 
analysis ( IBDLD ) based on the extent of identity-by-
state (IBS) around the investigated position [46]. The 
IBDLD between BHS and BHL were assumed to be null. 
The IBD between BH and RH were estimated by LA 
analysis ( IBDLA ) given the known gametic phases and 
the pedigree information [27, 46–48]. The IBD between 
pairs of RH were, thus, calculated as the combination of 
IBDLD and IBDLA ( IBDLDLA ). This allowed the construc-
tion, at each 50k SNP position l, of a matrix ( GIBD

l  ) allo-
cating IBD between RH carried by phenotyped ewes. 
Moreover, in order to account for the polygenic effects, 
a matrix of genome-wide IBD between gametes ( GIBD

g  ) 
was constructed by averaging elements of GIBD

l  across all 
the investigated SNP positions. At this stage, Usai et  al. 
[27] proposed the use of principal component analysis 
(PCA) to summarize the information of GIBD

l  and GIBD
g  . 

The aim of using PCA was to overcome issues related to 
the non-positive definite status of GIBD

l  and to limit the 
computational needs in handling both the IBD matrices. 
In fact, PCA led to a dramatic reduction in the number of 
effects to be estimated, so that the principal components 
from GIBD

l  and GIBD
g  can be included in the model as fixed 

effects. The final model does not include random effects 
other than the residuals and is solved by a weighted least 
square method.

At each 50k SNP position l the model is the following:

where y is a vector of APD of np phenotyped ewes for 
LnFec; µ is the overall mean; βl is a vector of the fixed 
effects of the nPCl

 principal components that explain 
more than 99% of the within-breed variation ( PCl ) of 
the IBD probability matrix GIBD

l  , i.e. βl summarizes the 
effects of the gamete at the QTL position l ; αl is a vec-
tor of the fixed effects of the nPCg principal components 
that explain more than 99% of the variation ( PCg ) of the 
genome-wide IBD probability matrix GIBD

g  , i.e. αl sum-
marizes the polygenic effects of the gametes; 1 is a vector 
of np ones; Z is a np × nRH incidence matrix relating phe-
notypes with RH; Vl is a nRH × nPCl

 matrix including the 
PCl scores of RH that summarize the IBD probabilities 

(1)y = 1µ+ ZVlβl + ZVgαl + ε,
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between the gametes at the considered position; Vg is a 
nRH × nPCg matrix including the PCg scores of RH; ε is 
a vector of np residuals assuming that ε ∼ N

(

0, σ 2
ε
R−1

)

 
with R being a diagonal matrix with the APD’s reliabil-
ity ( r ) as diagonal element. Reliabilities were calculated 
as ri = 1− se

(

âi
)2
/σ 2

a  , from a repeatability linear model 
yij = ai + eij , where yij is the performance deviation j 
adjusted for the fixed effects estimated with the full ani-
mal model of ewe i , ai is the random ewe effect assum-
ing that a ∼ N

(

0, σ 2
a I
)

 , and eij is the corresponding error, 
assuming that e ∼ N

(

0, σ 2
e I
)

 . Details on how the PC 
scores of the Vl and Vg matrices were calculated are in 
[27].

Since the IBD between segments of different breed ori-
gin (i.e. replicates of BHS and BHL ) was set to 0, the PCA 
generated two sets of breed-specific PCl . Thus, the matrix 
Vl can be written as 

[

VS
l V

L
l

]

 and the vector β
′

l as 
[

β
′S
l β

′L
l

]

 , 
where VS

l  and VL
l  are the PCl summarising IBD probabili-

ties between the gametes of Sarda and Lacaune origin 
and βSl  and βLl  the corresponding effects.

The final aim of this work was to identify QTL seg-
regating in the Sarda breed and to search for candidate 
genes and causative mutations by functional annotation 
and association analysis of the imputed Sarda sequence 
data in the identified regions. Thus, at each SNP posi-
tion, we tested the null hypothesis that the effects of the 
principal components that explain 99% of the variabil-
ity due to the Sarda gametes are zero ( H0 : βSl  = 0) by an 
F-test that compares the sums of squared residuals of the 
full model in Eq. (1) and of the following reduced model 
including all the other effects:

The Bonferroni correction for multiple testing was used 
to estimate the threshold corresponding to the genome-
wise (GW) significance level. To be conservative, we 
omitted the LD between SNPs, and calculated the nomi-
nal P-value for each tested position as Pnominal =

PGW
nTest , 

were PGW  is the genome-wise significance level chosen 
for the analysis (0.05) and nTest is the number of tested 
positions (43,390). The negative logarithm of Pnominal 
resulted in a threshold of −log10(Pvalue) equal to 5.938, 
which was rounded to 6.

Significant positions identified on the same chromo-
some were clustered into QTL regions (QTLR) in order 
to account for linkage between SNPs. As proposed by 
Usai et  al. [27], the correlations between ŷQl

= ZVl
̂βl 

(corresponding to the portion of phenotypes predicted 
in the model by the QTL effect) were calculated for all 
pairs of significant SNPs on the same chromosome. The 
most significant SNP on the chromosome was taken as 
the peak of the first QTLR. Peaks that identified a further 

y = 1µ+ ZVL
l β

L
l + ZVgαl + ε∗.

QTLR on the same chromosome were iteratively detected 
as the significant SNPs showing correlations lower than 
0.15 with the already defined QTLR peaks. The remain-
ing significant positions were assigned to the QTLR with 
which they had the highest correlation. Moreover, with 
the aim of appreciating the relative potential impact of 
a marker-assisted selection approach, we calculated the 
ANOVA estimator of the QTL variance for the most sig-
nificant position of each QTLR as:

where SSEF =

⌈

y −

(

1µ+ ZVL
l β

L
l + ZVS

l β
S
l + ZVgαl

)⌉′

⌈

y −

(

1µ+ ZVL
l β

L
l + ZVS

l β
S
l + ZVgαl

)⌉

 is the sum of 
squared residuals of the full model including the Sarda 
PC at the peak position; and SSER =

⌈

y −
(

1µ+ ZVL
l β

L
l

+ZVgαl

)⌉
′
⌈

y −
(

1µ+ ZVL
l β

L
l + ZVgαl

)⌉

 is the sum of 
squared residuals of the reduced (without the Sarda PC) 
model; and nPCS and nPCL are the number of PC sum-
marising the IBD probabilities between the gametes of 
Sarda and Lacaune origin, respectively; and nPCg is the 
number of PC extracted from the genome-wide IBD 
probability matrix.

The ratio between the ANOVA estimators of the QTL 
variances ( ̂σ 2

qtlS ) and the total phenotypic variance of the 
pseudo-phenotypes was calculated for the peak of each 
QTLR.

Analysis of sequence data
The QTLR as defined above or the 2-Mb intervals that 
surround the most significant locations when only one 
50k SNP was significant, were further investigated using 
information from whole-genome sequence (WGS) data. 
Biallelic SNPs falling in these target QTLR were extracted 
from the assembled sequences of the re-sequenced ani-
mals as vcf-files. First, a functional annotation of the 
SNPs identified by WGS was performed using the NCBI 
4.0 sheep genome annotation release 102 and the snpEff 
software v4.3.t [49]. Then, the parental gametes of the 
phenotyped ewes were imputed from 50 k data to WGS. 
The first step of the imputation procedure was to recon-
struct the phase of each gamete i carried by the 
sequenced animals ( hQi  ) that consisted in estimating the 
probability of carrying the reference P

(

h
Q
il = R

)

 and the 
alternative P

(

h
Q
il = A

)

 allele at each WGS SNP position l 
based on the genotype information from sequencing and 
the IBD between gametes at the neighbouring SNP 50k. 
Then, at each WGS SNP position l of the parental gamete 
j carried by each of the none-sequenced phenotyped 

̂

σ 2
qtlS =

SSER−SSEF
nPCS

−
SSEF

np−nPCg−nPCL−nPCS−1
np

nPCS

,
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ewes, we inferred the probabilities of carrying the refer-
ence P

(

h
p
jl = R

)

 and the alternative allele P
(

h
p
jl = A

)

 
based on the gametic phase of sequenced animals and the 
IBD between gametes of sequenced animals with gam-
etes of the phenotyped ewes [50]. The accuracy of the 
imputation was calculated as the correlation between the 
probability for an imputed WGS SNP allele at each 50k 
SNP position and the actual occurrence of the same allele 
given the 50k genotyping information and the gametic 
phase reconstructed in the previous analysis. Moreover, 
to verify that the imputed data could be used for the 
association analysis, the information content of each 
WGS SNP for all imputed gametes was calculated as the 
squared difference of the allele probabilities 
[

P
(

h
p
jl = R

)

− P
(

h
p
jl = A

)]2
 . These statistics were aver-

aged across positions and gametes.
Finally, an association analysis was run in the target 

regions, by regressing the pseudo-phenotypes on the 
allele dosage calculated as the sum of the probabilities of 
carrying the reference allele in the paternal and maternal 
gametes predicted by imputation. The allele dosage was 
used instead of the genotype probabilities since it allows 
the direct estimation of the additive substitution effect of 
the reference allele with just one regressor in the model. 
However, the genotype probabilities imply a multiple 
regression model and are more adapted for estimating 
non-additive effects. As in Eq.  (1), the model included 
the PC extracted from the genome-wide IBD probability 
matrix to adjust for the polygenic background.

An F test was performed to calculate the P-values of 
each tested WGS SNP. The analysis was performed in 
order to identify the most relevant WGS SNPs, which 
were selected by setting the threshold of −log10(Pvalue) 
equal to the maximum per region minus 2.

Searching for candidate genes
Genes that harboured variants with a potential functional 
impact or variants that showed the highest P-values 
identified in the previous analyses, were compared with 
functional candidate genes selected from QTL or gene 
expression studies related to GIN resistance. In particu-
lar, we took advantage of the recent summary provided 
by [51] in which a deep review of the latest literature on 
the subject was performed. They identified 11 SNP chip-
based QTL detection analyses (based on GWAS, LA, 
LDLA, selection sweep mapping or regional heritability 
mapping methods) from which they extracted 230 signif-
icantly associated genomic regions. Moreover, they pro-
posed a list of 1892 genes reported as highly expressed or 
differentially expressed after GIN infection in sheep by 12 
different experiments in the field. QTL regions and GIN 
activated genes proposed by [51] were remapped from 

the Ovis aries genome 3.1 assembly to the Oar4.0 version 
by using Biomart and NCBI remapping services for com-
parison with our results.

Finally, we performed an over-representation analysis 
(ORA) of gene ontology (GO) biological process terms of 
the genes harboring significant mutations or mutations 
with functional consequences on the transcripts. We 
performed the ORA with the web-based software Web-
Gestalt [52]. Gene symbols of human gene orthologues 
were retrieved from the OrthoDB v10 data base [53] 
starting from the NBCI ID of sheep genes from the Ovis 
aries annotation release 102. The human genome protein 
coding database was taken as reference and the following 
parameters were used for the analysis: default statistical 
method (hypergeometric); minimum number of genes 
included in the term = 5, multiple test adjustment = BH 
method (Benjamini–Hochberg FDR). The ten top catego-
ries were retained based on FDR rank.

Results
Variance components
Table  2 shows the variance component estimates 
obtained with the repeatability animal model. The 
heritability and repeatability estimates of lnFec were 
0.21 ± 0.015 and 0.27 ± 0.012, respectively (Table 2).

QTL detection analysis
Figure  1 presents the Manhattan plot of the 
−log10(Pvalue) corresponding to the null hypothesis that 
the effects of PC that explain 99% of the variability due 
to the Sarda base gametes at each locus (43,390 SNPs) 
are zero. Two hundred and two SNPs encompassed the 
5% genome-wide significant threshold. With the excep-
tion of Ovis aries chromosome (OAR) 1, on which only 
one significant location was found, many significant 
SNPs mapped to the same chromosome. After clustering 
the significant locations on the same chromosome, ten 
QTLR were defined on nine chromosomes (Table 3). The 
ratio between the ANOVA estimator of the QTL variance 
and the total phenotypic variance ranged from 0.0087 to 
0.0176.

Table 2  Estimates and standard errors of genetic, permanent 
environment (Pe) and residual variances and repeatability (Rp) 
and heritability (h2) estimates for LnFec

Component Standard error

Genetic (ln2) 0.341 0.026

Pe (ln2) 0.097 0.016

Residual (ln2) 1.187 0.015

Rp 0.270 0.012

h2 0.210 0.015
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The most significant location 
( −log10(Pvalue) = 12.861) was in a large region on 
OAR20, that covered almost 20  Mb and included 154 
significant SNPs. Correlations between ŷQl

 at the peak 
position and the other 153 significant locations were 
always higher than 0.25. The second most significant 
peak was on OAR12 in a QTLR spanning 5.18 Mb and 
including another 18 significant SNPs, with correlations 
between ŷQl

 greater than 0.46. The third QTLR in order 
of significance was at the beginning of OAR4, spanned 
4.6 Mb and included six SNPs. Eleven SNPs on OAR19 

exceeded the 5% genome-wide significance thresh-
old. Although the two most distant SNPs defined an 
interval of about 12.5 Mb, all the SNPs clustered in the 
same QTLR, since the correlations between ŷQl

 were 
always higher than 0.48. Other QTLR (approximately 
500 to 700 kb long and including from 1 to 3 significant 
SNPs) were identified on OAR15, 6, 7 and 2. An addi-
tional significant SNP, ~ 100  Mb apart from the previ-
ous one, was also identified on OAR2. The last QTLR 
was defined in the 2-Mb interval surrounding the single 
significant SNP on OAR1.

Fig. 1  Manhattan plot of the −log10(Pvalue) corresponding to the null hypothesis that the effects of principal components that explain 99% of the 
variability due to the Sarda base gametes at each locus are zero. The grey line indicates the 0.05 genome-wide significance threshold determined 
by Bonferroni correction for 43,390 tests

Table 3  QTL regions from the LDLA analysis

QTLR: QTL region identifier; OAR Ovis aries autosome; Range: position, in bp from the ovine genome assembly v4.0, of the first and last significant SNP of the QTL 
region; nSNP number of SNPs from the OvineSNP50 Beadchip exceeding the 0.05 genome-wide significance threshold −log10(Pvalue) > 6 ; Pos: position of the 
most significant SNP in bp; −log10(Pvalue) : negative logarithm of the p-value of the most significant SNP; 

̂σ 2
qtlS

/

̂σ 2
APD

 : ratio between the ANOVA estimator of the QTL 
variance at peak position ( ̂σ 2

qtlS ) and the total phenotypic variance of the pseudo-phenotypes ( ̂σ 2
APD)

QTLR OAR Range (bp) nSNP Pos (bp) − log10
(
Pvalue

)
σ̂
2
qtlS

/
σ
2
APD

Q_01_1 1 99,988,914–99,988,914 1 99,988,914 6.256 0.0087

Q_02_1 2 135,598,790–135,598,790 1 135,598,790 6.078 0.0093

Q_02_2 2 213,089,849–213,166,468 3 213,135,270 6.554 0.0093

Q_04_1 4 5,252,005–9,837,812 6 5,386,849 7.404 0.0111

Q_06_1 6 12,638,149–12,695,314 3 12,695,314 6.864 0.0099

Q_07_1 7 88,040,710–88,085,726 2 88,040,710 6.762 0.0098

Q_12_1 12 35,973,543–41,153,795 19 39,430,517 9.191 0.0125

Q_15_1 15 34,024,406–34,081,200 2 34024406 7.362 0.0110

Q_19_1 19 18,933,658–31,429,916 11 18,983,777 7.302 0.0104

Q_20_1 20 16,796,770–36,098,292 154 21,170,858 12.861 0.0176



Page 9 of 16Casu et al. Genetics Selection Evolution            (2022) 54:2 	

Analysis of sequence data
QTLR, rounded to the closest Mb, were further inves-
tigated with WGS data. Overall, 712,987 biallelic SNPs 
were extracted from the target regions. Among these, 
649,054 were already known in the European Variation 
Archive (EVA, ftp://​ftp.​ebi.​ac.​uk/​pub/​datab​ases/​eva/​rs_​
relea​ses/​relea​se_1/​by_​speci​es/​Sheep_​9940/​GCA_​00029​
8735.2), while 63,933 (8.96%) were novel variants, with-
out an associated rs identifier.

The average mutation rate ranged from 7711 to 14,428 
SNPs per Mb. Accuracy of imputation at the 50  k SNP 
positions ranged from 0.990 on OAR6 to 0.979 on OAR7 
(Table  4). The imputation process resulted in an aver-
age information content across gametes and QTLR of 
0.976 ± 0.17, which ranged from 0.967 ± 0.02 for OAR4 
to 0.985 ± 0.14 for OAR12. Based on such informative-
ness, we performed an association analysis at each poly-
morphic site from WGS (Table 5). Graphical comparison 
between Manhattan-plots of LDLA and WGS-based data 
association analysis are reported in Additional file 1: Figs. 
S1–S10.

QTL on OAR4, 12, 19 and 20 remained the most sig-
nificant. As in the LDLA analysis, the test statistic pro-
file in the WGS analysis was not unimodal and, in some 
cases, the most significant positions were at different 
locations compared to the previous analysis. Thus, on 
OAR4 the peak from the WGS association analysis 
mapped at 8,686,421 bp, closer to the second peak and 
almost 3.3 Mb from the most significant position iden-
tified with LDLA. Similarly, on OAR12, the WGS peak 
position was at 41,043,088 bp, 1.6 Mb from the LDLA 
peak and close to a SNP from the OvineSNP50 Bead-
chip which did not reach genome-wide significance 

with LDLA ( −log10(Pvalue) = 5.79). On OAR19, the 
most significant position in the LDLA and WGS anal-
yses were only 467  kb apart, although the explored 
region was 14  Mb long and showed several peaks in 
both analyses. As far as the QTLR on OAR20 was 
concerned, the most significant position in the WGS 
association analysis, was almost 5  Mb distant from 
the LDLA peak. However, the other WGS significant 
SNPs were close to the LDLA peak. Indeed, the second 
peak from WGS was only 68 kb apart from the LDLA 
peak. Moreover, the SNPs from the OvineSNP50 Bead-
chip which were closer to the second (rs416381272) 
and third (rs411905117) significant WGS peaks also 
ranked third and second in the LDLA analysis. In the 

Table 4  Description of the QTL regions from whole-genome sequences and results of the imputation procedure

QTLR: QTL region identifier; Range: start and end position of the explored interval in Mb from the ovine genome assembly v4.0; nSNPa: number of polymorphic sites 
from sequence data; MR: mutation rate, i.e. number of SNPs per Mb; nSNPb: number of polymorphic sites from both the OvineSNP50 Beadchip and sequence data 
used for calculating the accuracy of imputation; IC: information content and Accuracy: accuracy of imputation of gametes carried by phenotyped ewes

QTLR Interval IC Accuracy

Range (Mb) nSNPsa MR (nSNPs/Mb) Mean ± SD nSNPsb Mean ± SD

Q_01_1 99–100 15,410 7711 0.983 ± 0.017 33 0.983 ± 0.026

Q_02_1 135–137 21,708 10,859 0.973 ± 0.015 39 0.986 ± 0.009

Q_02_2 212–214 24,361 12,181 0.982 ± 0.013 35 0.995 ± 0.004

Q_04_1 4–10 86,568 14,428 0.967 ± 0.020 113 0.987 ± 0.011

Q_06_1 12–14 26,466 13,234 0.973 ± 0.014 40 0.990 ± 0.005

Q_07_1 87–89 26,375 13,188 0.974 ± 0.016 43 0.979 ± 0.034

Q_12_1 35–42 54,785 7827 0.985 ± 0.014 119 0.995 ± 0.006

Q_15_1 33–35 21,528 10,764 0.972 ± 0.018 34 0.986 ± 0.009

Q_19_1 18–32 167,487 11,963 0.972 ± 0.019 222 0.987 ± 0.017

Q_20_1 16–37 268,299 12,778 0.976 ± 0.021 365 0.987 ± 0.028

Total – 712,987 11,884 0.976 ± 0.017 1043 0.988 ± 0.021

Table 5  Results of the association analysis based on imputed 
alleles at the polymorphic sites from WGS

QTLR: QTL region identifier; OAR Ovis aries autosome; SNP ID: SNP identifier; Pos: 
position of the most significant SNP in bp based on the ovine genome assembly 
v4.0.; -log10 (Pvalue) negative logarithm of the P-value of the most significant 
SNP

QTLR OAR SNP ID Pos − log10
(
Pvalue

)

Q_01_1 1 rs430083769 100,326,208 6.4402

Q_02_1 2 rs416887054 135,331,051 6.6044

Q_02_2 2 rs418850058 213,396,760 5.5896

Q_04_1 4 rs430604472 8,686,421 8.2004

Q_06_1 6 rs400533049 13,159,311 6.9217

Q_07_1 7 rs398163681 87,832,764 6.6496

Q_12_1 12 rs405838891 41,043,088 8.0020

Q_15_1 15 rs427631513 34,330,615 4.9680

Q_19_1 19 rs420265308 19,228,546 8.8439

Q_20_1 20 rs404860665 26,158,816 13.2036

ftp://ftp.ebi.ac.uk/pub/databases/eva/rs_releases/release_1/by_species/Sheep_9940/GCA_000298735.2
ftp://ftp.ebi.ac.uk/pub/databases/eva/rs_releases/release_1/by_species/Sheep_9940/GCA_000298735.2
ftp://ftp.ebi.ac.uk/pub/databases/eva/rs_releases/release_1/by_species/Sheep_9940/GCA_000298735.2
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other analysed QTLR, with a lower significance level 
and smaller number of significant SNPs, peak posi-
tions from WGS data were within a distance of 500 kb 
from the LDLA peaks. Finally, while nominal P-values 
remained similar in the two analyses for most of the 
investigated regions, an evident drop of significance 
was observed on OAR15, where the −log10(Pvalue) 
dropped from 7.36, in the LDLA analysis to 4.97 in the 
WGS based association analysis.

As far as the functional annotation was concerned, 
SNPeff provided 2,250,514 effects for the 712,987 ana-
lysed SNPs in the explored 60  Mb, since a variant can 
affect two genes and a gene can have multiple transcripts 
(Table 6).

The number of effects by impact (high, moderate, 
modifier and low), type and region according to SNPeff 
classification is reported in Additional file 2: Tables S1–
S10. Among the SNPs that affect transcripts, 0.8 to 1% of 
them per region, concerned pseudogenes and were not 
considered. In addition, variants that were in intergenic 
regions (from 4.2 to 27.4% of the predicted effects per 
QTLR) were not further investigated.

Finally, we focused on variants that were classified as 
having a high impact on the transcript of protein coding 
genes (classified by SNPeff as: splice_acceptor_variant; 
splice_donor_variant; start_lost; stop_gained; stop_lost) 
or a moderate impact (which were all predicted as hav-
ing a missense effect in our case, i.e. variants that change 
one or more bases, resulting in a different amino acid 
sequence but the length of which is preserved). On the 
whole, 3538 polymorphisms were predicted to cause 
high-impact or missense effects (340 and 9105 effects, 
respectively) on the multiple transcripts of 530 protein 

coding genes. A detailed description of the classification 
of the retained variants is in Additional file 3: Table S11.

The ten most significant SNPs from the WGS analy-
sis were all classified as modifier, since they were either 
intergenic or intronic (see Additional file  4: Table  S12), 
and thus had no effect on the transcript. None of the 
high-impact variants showed high significance levels. 
Indeed, only four missense variants encompassed the 
empirical threshold of −log10(Pvalue) equal to the maxi-
mum per region minus 2: one affected three transcripts 
of the CIART​ (circadian associated repressor of transcrip-
tion) gene on OAR1 (rs159646335) and three affected 
the transcript of the OTOG (otogelin) gene on OAR15 
(rs420057627, rs401738285 and rs422155776).

The 530 genes that harbored high or moderate (mis-
sense effect) impact variants and another 13 genes with 
polymorphisms encompassing the empirical threshold of 
max

(

−log10(Pvalue)
)

− 2 were submitted to an enrich-
ment analysis of GO biological process terms. Of the 
543 genes considered, 50 did not have a human ortholog 
in the OrthoDb database [53] and 493 mapped to 442 
human genes, since 53 shared the same human ortholog. 
Finally, 376 genes were annotated to the selected func-
tional categories (GO biological process) and were used 
for the enrichment analysis.

None of the GO terms identified by the enrichment 
analysis from the biological process database was sig-
nificantly enriched. The ten most abundant terms (see 
Additional file  5: Table  S13) identified (interferon-
gamma-mediated signaling pathway; sialic acid trans-
port; T cell receptor signaling pathway; activation of 
immune response; positive regulation of immune system 
process; regulation of immune system process; immune 
response-activating cell surface receptor signaling 

Table 6  Summary of the genomic features in the investigated regions

QTLR: QTL region identifier; lncRNA: long non coding RNAs; miRNA; microRNAs; misc_RNA: miscellaneous RNA; pseudogene: genes with pseudogene biotype; protein 
coding: number of genes (and number of transcripts) that contains an open reading frame (ORF)

QTLR tRNA lncRNA miRNA misc_RNA Pseudogene Protein 
coding (n 
transcr)

Q_01_1 1 10 1 12 65 (153)

Q_02_1 1 2 1 11 (38)

Q_02_2 1 1 3 (16)

Q_04_1 1 6 2 30 (74)

Q_06_1 1 5 1 10 (83)

Q_07_1 2 6 3 (22)

Q_12_1 3 12 1 7 77 (170)

Q_15_1 3 2 23 (43)

Q_19_1 1 12 1 5 27 (118)

Q_20_1 43 46 1 47 423 (761)

Total 54 103 1 3 77 672 (1478)
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pathway; immune response-regulating signaling pathway; 
innate immune response; and defense response) were 
further clustered into three superior categories accord-
ing to the Weighted set cover method for redundancy 
reduction available in Genstalt [52]: sialic acid trans-
port; regulation of immune system process; and defense 
response. The last two categories, which clearly relate to 
resistance to diseases, included 53 and 56 genes, respec-
tively, 36 of which enriched both terms. Among the genes 
in one of these two GO higher categories, 12 were also 
in the list of GIN activated genes provided by Chitneedi 
et  al. 2020 [51]: CTSS on OAR1, TNFRSF1B and SELE 
on OAR12, IL5RA on OAR19, IL17A, IL17F, TRIM26, 
TRIM38, TNFRSF21, LOC101118999, VEGFA, and TNF 
on OAR20.

Discussion
The heritability estimate of lnFec in this study was low 
to moderate and consistent with previous studies in 
adult ewes, which reported heritabilities of FEC, after 
appropriate logarithmic or squared root transformation, 
ranging from 0.09 [54] to 0.21 [12] and 0.35 [14]. On the 
contrary, the repeatability estimate was higher with the 
permanent environmental variance equal to 6% of the 
total phenotypic variance. Aguerre et al. [14] did not find 
significant differences between heritability and repeat-
ability estimates in naturally-infected ewes and suggested 
that individual variability was mainly due to differences 
in the genetic background rather than in differences in 
the immune history of the animals. Although the charac-
terisation of worm species in individual samples was not 
systematically performed in our experiment, it has been 
demonstrated that resistance to different species of nem-
atodes tend to be interrelated, with genetic correlations 
between FEC values from different species or genera of 
parasites being generally close to 0.5 or higher in some 
cases [55, 56]. Moreover, it has been shown that sheep 
that are selected on the basis of their response to artifi-
cial challenges respond similarly when exposed to natu-
ral infection, and a high positive genetic correlation was 
estimated between FEC recorded under artificial or natu-
ral infection [14, 57]. Such evidence and the heritability 
estimate found in our study suggest that genetic selection 
for parasitism resistance could be considered in the Sarda 
breed.

The LDLA analysis identified 202 genomic positions 
that were significantly associated to FEC. We grouped 
these positions into regions based on the correlations 
between the predicted effects of the QTL. Five of the ten 
identified QTLR (OAR4, 7, 12, 19, 20) overlapped with 
regions that were shown to be associated to traits related 
to GIN resistance in previous SNPs based studies. In par-
ticular, the QTLR on OAR4, 12, 19 and 20 overlap with 

significant windows identified by [21] in a meta-analysis 
based on the regional heritability mapping method on 
data including the first two generations of our experi-
mental population. QTLR on OAR19 has also been found 
to be significantly associated to FEC measured in lambs 
[58], while several positions on OAR20 have been indi-
cated as associated to susceptibility to parasites in other 
studies [17, 19, 20]. The QTLR on OAR7 falls in a region 
that was identified in a breed of sheep adapted to tropi-
cal climate [59] and is close to a signature of selection 
detected by comparing two breeds selectively bred for 
high and low FEC [22]. The regions associated to resist-
ance to nematode infection on OAR2 [20, 58, 59], OAR6 
[20, 23, 59, 61] and OAR15 [58, 61] were found in several 
studies but only our first QTLR on OAR2 (Q_02_1), was 
close to previously reported significant positions [20, 58, 
59].

QTL associated to nematode resistance have been 
identified on almost all the ovine chromosomes (see [10, 
62] and [51] for a recent summary) for a recent sum-
mary). However, the comparison of results between stud-
ies is complex due to the variability of the breeds and 
nematode species analyzed, and to the use of different 
statistical approaches. It is likely that resistance to GIN 
is a complex trait that is determined by a large num-
ber of genes [63], and, to date, no major gene has been 
identified.

In this study, we examined whether combining the sig-
nificant results obtained from an association analysis of 
accurate imputed data with the functional annotation of 
SNPs within target regions was advantageous. The origi-
nal idea was to verify if considering the significance levels 
of SNPs was useful to pinpoint functional variants with 
a potential impact on candidate genes that are identified 
based on their ontological classification or that are dif-
ferentially expressed in studies that analyze susceptibility 
differences of sheep to nematodes. All these results are 
summarized in Additional file 3: Table S11.

The WGS association analysis was not able to provide 
a definite significance profile within QTLR. In all the 
QTLR, the number of peaks still remained large, and 
often the distance between them was quite big. This is 
likely a consequence of the large size of the chromosomal 
segments with high correlations between ŷQl

 that reveals 
high LD levels within QTLR. Moreover, none of the 
most significant SNPs showed a functional effect on the 
genes’ transcript. This result can be in part due to the fact 
that we focused on intragenic regions of protein coding 
genes, whereas it has been suggested that a large part of 
the genetic variability of quantitative traits lies in regula-
tory regions or in non-protein coding regions, which are, 
however, very poorly annotated in the ovine genome.
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However, our results indicate that the QTLR located 
on OAR12, 19 and 20 are strongly involved in the com-
plex mechanism of resistance of sheep to GIN. Not only 
these regions harbor the most significant SNPs in both 
the LDLA and WGS analyses, but they have also been 
reported in the literature either from other QTL detec-
tion analyses and from studies on GIN resistance based 
on differential gene expression. In particular, in these 
regions, we found genes that: (i) contain polymorphisms 
with a high impact or missense effect, (ii) included in list 
of GIN-activated genes, and (iii) contribute to enrich the 
most represented GO process in our enrichment analysis. 
Among these genes, two contributed to enrich the GO 
terms regulation of immune system process and defense 
response and mapped to the QTLR region on OAR12: the 
TNFRSF1B (TNF receptor superfamily member 1B) gene 
that harbors a missense mutation (c.103G > A) in exon 2 
at position 39,567,687 bp and is very close to the peak of 
the LDLA analysis (3,943,0517 bp), and the SELE (selec-
tin E) gene that contains four missense variants. Accord-
ing to the Entrez summary for the human ortholog, SELE 
encodes a protein that is found in cytokine-stimulated 
endothelial cells and is thought to be responsible for the 
accumulation of blood leukocytes at sites of inflamma-
tion by mediating the adhesion of cells to the vascular 
lining. In sheep, Gossner et al. [64] found that the SELE 
gene is down-expressed in the abomasal lymph nodes of 
resistant lambs infected with T. circumcincta, which sug-
gests that a possible component of the response of resist-
ant animals to GIN infection could be the repression of 
acute inflammation and tissues healing.

On OAR19, the most significant peak of the WGS asso-
ciation analysis falls in the first intron of the GRM7 (glu-
tamate metabotropic receptor 7) gene, which is neither 
included in the list of GIN-activated genes nor contrib-
utes to the GO selected terms. However, in the explored 
QTLR on this chromosome, we found 13 missense vari-
ants in the IL5RA (interleukin 5 receptor subunit alpha) 
gene, which support the enriched GO term “defense 
response” in our GO enrichment analysis and appears in 
the list of GIN-activated genes. Indeed, the IL5RA gene 
was found to have an increased expression in resist-
ant animals in several studies (Scottish Blackface lambs 
resistant to T. circumcincta [64]; Churra resistant sheep 
infected by the same species [65]; resistant lambs of two 
different selection flocks of merino sheep [66]).

The QTLR identified on OAR20 is indeed very large 
and encompasses the MHC region, although the genes 
from the MHC are located 4 to 6  Mb away from the 
LDLA most significant location. The MHC complex 
plays an important role in presenting processed anti-
gens to host T lymphocytes, causing T cell activation and 
an immunological cascade of events that build the host 

immunity. Due to the highly polymorphic nature of the 
MHC region, it is difficult to identify causative mutations 
useful for selection for GIN resistance [62]. The most sig-
nificant SNP in the WGS analysis (rs404860665) mapped 
to the fourth intron of the LOC101111058 (butyrophilin-
like protein 1) gene with no function defined in NCBI for 
sheep. Since no human orthologue of this gene was found 
in the OrthoDB data base [53], it was not included in the 
enrichment analysis. However, it is highly expressed in 
the gastrointestinal tract of sheep (caecum, duodenum, 
colon, and rectum). Moreover, there is cumulating evi-
dence that butyrophilin-like proteins may have a role as 
local regulators of intestinal inflammation in other spe-
cies [67].

In the target region on OAR20, another 20 missense 
mutations were detected in eight genes (IL17A, IL17F, 
TRIM26, TRIM38, TNFRSF21, LOC101118999, VEGFA, 
and TNF), which are present in the list of GIN-activated 
genes and contributed to enrich the main GO terms 
“regulation of immune system process” and “defense 
response”. Among these, the genes encoding interleu-
kins 17 (IL17A and IL17F), have been mentioned [68] as 
positional candidates for GIN resistance, but to date, they 
have not been described in studies on sheep resistance to 
GIN. However, Gadahi et  al. [69] found that IL-17 level 
was significantly increased in peripheral blood mononu-
clear cells (PBMC) of goats incubated with Haemonchus 
contortus excretory and secretory proteins (HcESP) and 
they suggested that such an enhanced IL-17 level might 
favor the survival of the worm in the host. Moreover, it 
has been reported that the IL17F gene showed the most 
significant expression difference in the response of the 
abomasal mucosa of Creole goat kids infected with Hae-
monchus contortus, i.e. its expression was three times 
higher in resistant compared to susceptible animals 
[70]. Missense mutations were also detected in the TNF 
(tumor necrosis factor) and TNFRSF21 (TNF receptor 
superfamily member 21) genes. Tumor necrosis factor 
(TNF) is a cytokine involved in systemic inflammation. 
The interactions between TNF family ligands and their 
receptors are involved in the modulation of a number of 
signaling pathways in the immune system, such as cell 
proliferation, differentiation, apoptosis and survival [71]. 
Artis et  al. [72] suggested a role for TNF-α in regulat-
ing Th2 cytokine responses in the intestine, which has 
a significant effect on protective immunity to helminth 
infection. Moreover, the TNFα gene was relatively highly 
expressed in intestinal lymph cells of sheep selected for 
resistance to nematodes during infection with Trichos-
trongylus colubriformis [73]. In mice, TNFRSF21-knock-
out studies suggest that this gene plays a role in T-helper 
cell activation, and may be involved in inflammation and 
immune regulation [71]. A missense mutation was found 
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in the VEGFA (vascular endothelial growth factor A) 
gene, which was differentially expressed in abomasal lim-
phonodes of lambs with different susceptibilities to GIN 
[64] and in the abomasal mucosa of sheep infected with 
Haemonchus contortus [74]. Finally, nine already known 
missense mutations were detected in the TRIM26 and 
TRIM38 genes. The products of these genes belong to the 
tripartite motif (TRIM) protein family composed of more 
than 70 members in humans. Accumulating evidence has 
indicated that TRIM proteins play crucial roles in the 
regulation of the pathogenesis of autoimmune diseases 
and the host defense against pathogens, especially viruses 
[75]. Both genes were among the GIN-activated genes 
and contributed to enrich the terms “defense response” 
(TRIM38) and “interferon-gamma-mediated signaling 
pathway”, “innate immune response”, “defense response” 
(TRIM26). Lyu et al. [76] who investigated the risk asso-
ciated to nasopharyngeal carcinoma in humans, detected 
a regulatory variant in this gene and suggested that the 
downregulation of TRIM26, which is dependent on the 
allele at this variant, contributed to the downregulation 
of several immune genes and thus was associated to a low 
immune response.

Conclusions
Our results show that selective breeding may be an 
option to limit the issues related to infestation of gas-
tro-intestinal nematodes in sheep. On the one hand, the 
heritability estimate and QTL detection results confirm 
that both traditional progeny testing and marker-assisted 
selection are realistic options. However, the laborious-
ness of fecal egg counting on a large scale makes marker-
assisted selection potentially more profitable in terms of 
cost benefits. Indeed, the ten significant markers identi-
fied in our study and already available on the commer-
cial Illumina arrays explain an important portion of the 
genetic variation in our large population. On the other 
hand, the results of the combined use of whole genome 
data and functional annotation did not provide any 
marker or causative mutation to improve the efficiency 
of a marker-assisted selection program in the short term. 
However, our study which was carried out on a large 
experimental population provides a first list of candidate 
genes and SNPs which could be used to address further 
validation studies on independent populations. In the 
mid-term, the expected advancements in the quality of 
the annotation of the ovine genome and the use of exper-
imental designs based on sequence data and phenotypes 
from multiple breeds that show different LD extents and 
gametic phases may help to identify causative muta-
tions. As far as the Sarda breed is concerned, the Breed-
ers Association is assessing the feasibility of a selection 
program for nematode resistance based on fecal egg 

counting and on the genotypes described in this study 
for the nucleus flock and combined with the genotyping 
of selection candidate males that are bred in Herd Book 
farms and are genetically connected with the experimen-
tal flock.
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Additional file 1: Figure S1. Graphical comparison of LDLA and WGS-
based data association analyses within the QTL region Q_01_1 (chromo-
some 1). The figure shows the test statistics (− log10(nominal p-values) 
profile of the LDLA analysis (LDLA Mapping, red line) and Manhattan 
plot of the association analysis based on imputed genotypes from re-
sequenced animals (WGS Mapping, blue dots) in the QTL region Q_01_1 
(chromosome 1, imputation from 99 to 100 Mb of the Ovis aries genome 
assembly v4.0). Figure S2. Graphical comparison of LDLA and WGS-based 
data association analyses within the QTL region Q_02_1 (chromosome 
2). The figure shows the test statistics (− log10(nominal p-values) profile 
of the LDLA analysis (LDLA Mapping, red line) and Manhattan plot of the 
association analysis based on imputed genotypes from re-sequenced 
animals in the QTL region Q_02_1 (chromosome 2, imputation from 135 
to 137 Mb of the Ovis aries genome assembly v4.0). Figure S3. Graphical 
comparison of LDLA and WGS-based data association analyses within the 
QTL region Q_02_2 (chromosome 2). The figure shows the test statistics 
(− log10(nominal p-values) profile of the LDLA analysis (LDLA Map-
ping, red line) and Manhattan plot of the association analysis based on 
imputed genotypes from re-sequenced animals in the QTL region Q_02_2 
(chromosome 2, imputation from 212 to 214 Mb of the Ovis aries genome 
assembly v4.0). Figure S4. Graphical comparison of LDLA and WGS-based 
data association analyses within the QTL region Q_04_1 (chromosome 
4). The figure shows the test statistics (− log10(nominal p-values) profile 
of the LDLA analysis (LDLA Mapping, red line) and Manhattan plot of the 
association analysis based on imputed genotypes from re-sequenced 
animals in the QTL region Q_04_1 (chromosome 4, imputation from 4 
to 10 Mb of the Ovis aries genome assembly v4.0). Figure S5. Graphical 
comparison of LDLA and WGS-based data association analyses within the 
QTL region Q_06_1 (chromosome 6). The figure shows the test statistics 
(− log10(nominal p-values) profile of the LDLA analysis (LDLA Map-
ping, red line) and Manhattan plot of the association analysis based on 
imputed genotypes from re-sequenced animals in the QTL region Q_06_1 
(chromosome 6, imputation from 12 to 14 Mb of the Ovis aries genome 
assembly v4.0). Figure S6. Graphical comparison of LDLA and WGS-based 
data association analyses within the QTL region Q_07_1 (chromosome 
7). The figure shows the test statistics (− log10(nominal p-values) profile 
of the LDLA analysis (LDLA Mapping, red line) and Manhattan plot of the 
association analysis based on imputed genotypes from re-sequenced 
animals in the QTL region Q_07_1 (chromosome 7, imputation from 87 
to 89 Mb of the Ovis aries genome assembly v4.0). Figure S7. Graphical 
comparison of LDLA and WGS-based data association analyses within the 
QTL region Q_12_1 (chromosome 12). The figure shows the test statistics 
(− log10(nominal p-values) profile of the LDLA analysis (LDLA Map-
ping, red line) and Manhattan plot of the association analysis based on 
imputed genotypes from re-sequenced animals in the QTL region Q_12_1 
(chromosome 7, imputation from 35 to 42 Mb of the Ovis aries genome 
assembly v4.0). Figure S8. Graphical comparison of LDLA and WGS-based 
data association analyses within the QTL region Q_15_1 (chromosome 
15). The figure shows the test statistics (− log10(nominal p-values) profile 
of the LDLA analysis (LDLA Mapping, red line) and Manhattan plot of the 
association analysis based on imputed genotypes from re-sequenced 
animals in the QTL region Q_15_1 (chromosome 15, imputation from 33 
to 35 Mb of the Ovis aries genome assembly v4.0). Figure S9. Graphical 
comparison of LDLA and WGS-based data association analyses within 
the QTL region Q_19_1 (chromosome 19). The figure shows the test 
statistics (− log10(nominal p-values) profile of the LDLA analysis (LDLA 
Mapping, red line) and Manhattan plot of the association analysis based 
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on imputed genotypes from re-sequenced animals in the QTL region 
Q_19_1 (chromosome 19, imputation from 18 to 32 Mb of the Ovis aries 
genome assembly v4.0). Figure S10. Graphical comparison of LDLA and 
WGS-based data association analyses within the QTL region Q_20_1 
(chromosome 20). The figure shows the test statistics (− log10(nominal 
p-values) profile of the LDLA analysis (LDLA Mapping, red line) and 
Manhattan plot of the association analysis based on imputed genotypes 
from re-sequenced animals in the QTL region Q_20_1 (chromosome 20, 
imputation from 16 to 37 Mb of the Ovis aries genome assembly v4.0).

Additional file 2: Table S1. Variant classification according to SNPeff 
4.3t of bilallelic SNPs identified within the QTL region Q_01_1 on Ovis 
aries chromosome 1. Summary table extracted from the additional snpeff 
output file”snpEff_summary.html file” reporting the number of effects by 
impact and the number of effects per type and region, for the QTL region 
Q_01_1 on chromosome 1 (from 99000291 to 100998839 bp, Ovis aries 
genome assembly v4.0). Tables S2. Variant classification according to 
SNPeff 4.3t of bilallelic SNPs identified within the QTL region Q_02_1 on 
Ovis aries chromosome 2. Summary table extracted from the additional 
snpeff output file”snpEff_summary.html file” reporting the number of 
effects by impact and the number of effects per type and region, for the 
QTL region Q_02_1 on chromosome 2 (from 135000202 to 136999313 bp, 
Ovis aries genome assembly v4.0). Tables S3. Variant classification 
according to SNPeff 4.3t of bilallelic SNPs identified within the QTL region 
Q_02_2 on Ovis aries chromosome 2. Summary table extracted from the 
additional snpeff output file”snpEff_summary.html file” reporting the 
number of effects by impact and the number of effects per type and 
region, for the QTL region Q_02_2 on chromosome 2 (from 212000099 to 
213999982 bp, Ovis aries genome assembly v4.0). Tables S4. Variant clas-
sification according to SNPeff 4.3t of bilallelic SNPs identified within the 
QTL region Q_04_1 on Ovis aries chromosome 4. Summary table extracted 
from the additional snpeff output file”snpEff_summary.html file” reporting 
the number of effects by impact and the number of effects per type and 
region, for the QTL region Q_04_1 on chromosome 4 (from 4000037 to 
10000000 bp, Ovis aries genome assembly v4.0). Tables S5. Variant clas-
sification according to SNPeff 4.3t of bilallelic SNPs identified within the 
QTL region Q_06_1 on Ovis aries chromosome 6. Summary table extracted 
from the additional snpeff output file”snpEff_summary.html file” reporting 
the number of effects by impact and the number of effects per type and 
region, for the QTL region Q_06_1 on chromosome 6 (from 12000078 to 
13999887 bp, Ovis aries genome assembly v4.0). Tables S6. Variant clas-
sification according to SNPeff 4.3t of bilallelic SNPs identified within the 
QTL region Q_07_1 on Ovis aries chromosome 7. Summary table extracted 
from the additional snpeff output file”snpEff_summary.html file” reporting 
the number of effects by impact and the number of effects per type and 
region, for the QTL region Q_07_1 on chromosome 7 (from 87000021 to 
88999946 bp, Ovis aries genome assembly v4.0). Tables S7. Variant classifi-
cation according to SNPeff 4.3t of bilallelic SNPs identified within the QTL 
region Q_12_1 on Ovis aries chromosome 12. Summary table extracted 
from the additional snpeff output file”snpEff_summary.html file” reporting 
the number of effects by impact and the number of effects per type and 
region, for the QTL region Q_12_1 on chromosome 12 (from 35000043 to 
41999843 bp, Ovis aries genome assembly v4.0). Tables S8. Variant classi-
fication according to SNPeff 4.3t of bilallelic SNPs identified within the QTL 
region Q_15_1 on Ovis aries chromosome 15. Summary table extracted 
from the additional snpeff output file”snpEff_summary.html file” reporting 
the number of effects by impact and the number of effects per type and 
region, for the QTL region Q_15_1 on chromosome 15 (from 33000037 to 
34999984 bp, Ovis aries genome assembly v4.0). Tables S9. Variant classi-
fication according to SNPeff 4.3t of bilallelic SNPs identified within the QTL 
region Q_19_1 on Ovis aries chromosome 19. Summary table extracted 
from the additional snpeff output file”snpEff_summary.html file” reporting 
the number of effects by impact and the number of effects per type and 
region, for the QTL region Q_19_1 on chromosome 19 (from 18000014 to 
31999894 bp, Ovis aries genome assembly v4.0). Tables S10. Variant classi-
fication according to SNPeff 4.3t of bilallelic SNPs identified within the QTL 
region Q_20_1 on Ovis aries chromosome 20. Summary table extracted 
from the additional snpeff output file”snpEff_summary.html file” reporting 
the number of effects by impact and the number of effects per type and 
region, for the QTL region Q_20_1 on chromosome 20 (from 16000304 to 
36997864 bp, Ovis aries genome assembly v4.0).

Additional file 3: Table S11. Full characterisation of the retained SNPs: 
high or moderate impact variants or most significant variants from the 
association analysis mapping within the QTL regions. Description of 
the retained SNPs that mapped within the QTL regions identified in the 
present work: functional annotation from SNPeff; nominal significance 
level (− log10(nominal p-values) from the WGS based association analysis, 
GO biological process enriched term from WebGestalt analysis; and study 
from which the candidate GIN-activated gene listed by Chitneedi et al. 
2020 [51] was identified. The SNP positions are from the Ovis aries genome 
assembly v4.0.

Additional file 4: Table S12. Functional characterization of the 10 most 
significant SNPs per QTLR from the WGS analysis. Characterization of the 
10 most significant SNPs of the QTLR considered in this work and their 
functional consequences according to the annotation performed with 
SnpEff. The SNP positions are from the Ovis aries genome assembly v4.0.

Additional file 5: Table S13. Top hierarchical terms identified by the 
Gene Ontology (GO) enrichment analysis (biological process database) 
performed with WebGestalt. Results of the over-representation analysis 
(ORA) of GO biological process terms of the genes harboring significant 
mutations or mutations with functional consequences on the transcripts 
performed with WebGestalt. Gene symbols and ID of human gene ortho-
logues are reported. They were retrieved from the OrthoDB v10 data base 
starting from the NBCI ID of ovine genes from the Ovis aries annotation 
release 102.
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